Hu, H.-M., Sun, H.-S., You, X.-Z. \& Huang, X.-Y. (1996). Acta Cryst. C52, 1946-1948.
Kilbourn, B. T., Ryan, R. R. \& Dunitz, J. D. (1969). J. Chem. Soc. A, pp. 2407-2412.
Lu, T.-H., Tahirov, T. H., Chen, B.-H., Lai, C.-Y. \& Chung, C.-S. (1996). Acta Cryst. C52, 2684-2687.

Maxwell, I. E. \& Bailey, M. F. (1972). J. Chem. Soc. Dalton Trans. pp. 935-938.
Panneerselvam, K., Lu, T.-H., Chi, T.-Y., Chung, C.-S., Chen, Y.-J. \& Kwan, K.-S. (1998). Acta Cryst. C54, 25-27.
Sheldrick, G. M. (1990). SHELXTL-Plus. Structure Determination Software Programs. PC Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Simonov, Y. A., Bocelli, G., Fonari, M. S., Ganin, E. V. \& Popkov, Y. A. (1998). Acta Cryst. C54, 433-436.

Wang, A., Lee, T.-J., Chen, B.-H., Yuan, Y.-Z. \& Chung, C.-S. (1996). Acta Cryst. C52, 3033-3035.

Acta Cryst. (1999). C55, 162-165

Cubane tetrameric complexes of copper(I) chloride and bromide with triphenyl phosphite

Robert D. Pike, ${ }^{a}$ William H. Starnes Jr ${ }^{a}$ and Gene B. Carpenter ${ }^{b}$
${ }^{a}$ Department of Chemistry, College of William and Mary, Williamsburg, VA 23187, USA, and ${ }^{b}$ Department of Chemistry, Brown University, Providence, RI 02912, USA. E-mail: rdpike@facstaff.wm.edu
(Received 2 February 1998; accepted 28 September 1998)

Abstract

The crystal structures of tetra- μ_{3}-chloro-tetrakis[(triphenyl phosphite- P)copper $(\mathrm{I})]$, $\left[\mathrm{Cu}_{4} \mathrm{Cl}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}\right)_{4}\right]$, and tetra- μ_{3}-bromo-tetrakis [(triphenyl phosphite-P)copper(I) $],\left[\mathrm{Cu}_{4} \mathrm{Br}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}\right)_{4}\right]$, are described. Both have distorted 'cubane' $\mathrm{Cu}_{4} X_{4}$ cores. Distortion of the cubane structure is reflected in $X-\mathrm{Cu}-X$ angles $>90^{\circ}$ and $\mathrm{Cu}-X-\mathrm{Cu}$ angles $<90^{\circ}$, and is more pronounced in the bromide complex.

Comment

We have demonstrated recently that Cu^{1}-halide-phosphite complexes can induce crosslinking in thermally degrading poly(vinyl chloride) (PVC; Pike et al., 1997). This crosslinking appears to be the result of the reduc-
tive coupling of allylic chloride sites, caused by lowvalent Cu centers. Given this activity, Cu^{1}-phosphite complexes may be of importance as smoke-suppressant additives for PVC. During the course of our study, we prepared a number of complexes with the stoichiometry $[\mathrm{CuXL}]_{n}$, where X is a halide and L is a phosphite ligand. Although such complexes have long been known (Nishizawa, 1961), no X-ray structural information is available for these species.
We were readily able to prepare crystals of $\left[\mathrm{Cu}_{4} \mathrm{Cl}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}\right)_{4}\right]$, (I), and $\left[\mathrm{Cu}_{4} \mathrm{Br}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}\right)_{4}\right]$, (II). However, the iodide complex, which has a $1: 2 \mathrm{Cu}: \mathrm{I}$ ratio (Nishizawa, 1961), was not readily crystallizable. Both (I) and (II) proved to be composed of a 'cubane' $\mathrm{Cu}_{4} X_{4}$ core, in which each halide bridges three metal atoms and each metal atom is coordinated to a phosphite and three halide ligands. This arrangement is very well known for complexes of Cu^{1} and Ag^{1} halides. The cubane core structure has previously been observed for many phosphine complexes, including $[M X L]_{4}$ ($M=\mathrm{Cu}$ or $\mathrm{Ag}, X=\mathrm{Cl}, \mathrm{Br}$ or I , and $L=\mathrm{PPh}_{3}$ or PEt_{3}; Churchill \& Kalra, 1974a,c; Churchill, DeBoer \& Mendak, 1975; Churchill \& DeBoer, 1975; Churchill et al., 1976; Teo \& Calabrese, 1976a,b,c; Barron et al., 1984; Dyason et al., 1985), $\left[\mathrm{CuI}\left(\mathrm{PMePh}_{2}\right)\right]_{4}$ (Churchill \& Rotella, 1977), and $\left[\operatorname{CuBr}\left(\mathrm{P}^{\prime} \mathrm{Bu}\right)_{3}\right]_{4}$ (Goel \& Beauchamp, 1983). An alternative arrangement of the $\mathrm{Cu}_{4} X_{4}$ core, described as a step cluster, (III), is less common and is found for polymorphs of $\left[\mathrm{CuX}\left(\mathrm{PPh}_{3}\right)\right]_{4}(X=\mathrm{Br}$ or I; Churchill \& Kalra, 1974b; Churchill, DeBoer \& Donovan, 1975) and $\left[\mathrm{AgI}\left(\mathrm{PPh}_{3}\right)\right]_{4}$ (Teo \& Calabrese, 1976c). The trimesitylphosphine ligand proved sufficiently bulky to produce $\left[\mathrm{CuBr}\left(\mathrm{PMes}_{3}\right)\right]$ as a monomer with two-coordinate Cu^{1} (Alyea et al., 1985).

(I) $X=\mathrm{Cl}$
(II) $X=\mathrm{Br}$

In contrast to several previously reported $[M X L]_{4}$ series, the triphenylphosphite chloride, (I), and bromide, (II), complexes of Cu^{1} were not isomorphous. Complex (I) crystallized in the monoclinic space group $P 2_{1} / n$ ($Z=4$) and complex (II) in the trigonal space group $R \overline{3}(Z=6)$. For complex (II), the atoms $\mathrm{Br} 1, \mathrm{Cu} 1$ and P1 are located on the threefold axis, and only one third of the molecule is independent. As has been observed previously, the cubane core becomes increasingly distorted as the size of the halide ligand increases. Thus, complex (I) shows only slight distortion from cubane geometry; $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ bond angles average $94(3)^{\circ}$, and $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angles average $85(2)^{\circ}$. Complex (II)

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2. The molecular structure of (II), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
shows two separate distortions in the cubane core. One of these involves compression around the Br sites and expansion around the Cu sites, which has been noted in similar complexes. In addition, there is significant compression of the cube perpendicular to the threefold crystallographic axis. This results in slight expansion of the angles around Cu 1 and Br , which lie on the axis. The $\mathrm{Br}-\mathrm{Cul}-\mathrm{Br}$ angles are $101.87(3)^{\circ}$ and the other $\mathrm{Br}-\mathrm{Cu}-\mathrm{Br}$ angles average $97(4)^{\circ}$. Similarly, $\mathrm{Cu}-\mathrm{Brl}-\mathrm{Cu}$ is $83.71(3)^{\circ}$ and the other $\mathrm{Cu}-\mathrm{Br}-\mathrm{Cu}$ angles average $80(3)^{\circ}$.

Experimental

The title complexes were prepared as previously described (Nishizawa, 1961) and were crystallized from toluene solutions layered with hexanes in a 3 mm (inside diameter) tube. Very large crystals resulted, which required cutting prior to X-ray analysis.

Compound (I)

Crystal data

$\left[\mathrm{Cu}_{4} \mathrm{Cl}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}\right)_{4}\right]$
$M_{r}=1637.15$
Monoclinic
$P 2_{1} / n$
$a=14.6643$ (2) \AA
$b=22.6409$ (3) \AA
$c=22.6645(1) \AA$
$\beta=107.434(1)^{\circ}$
$V=7179.2(1) \AA^{3}$
$Z=4$
$D_{x}=1.515 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens P4 CCD diffractometer
ω and φ scans
Absorption correction:
empirical (SADABS;
Blessing, 1995; Sheldrick, 1996)
$T_{\text {min }}=0.483, T_{\text {max }}=0.724$
56312 measured reflections
12671 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.111$
$S=1.013$
12671 reflections
865 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0214 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 8192 reflections
$\theta=1.9-28.0^{\circ}$
$\mu=1.467 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Irregular block
$0.54 \times 0.24 \times 0.22 \mathrm{~mm}$
Colorless

7760 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.073$
$\theta_{\text {max }}=25.03^{\circ}$
$h=-17 \rightarrow 9$
$k=-26 \rightarrow 24$
$l=-23 \rightarrow 26$
Intensity decay: -0.6%

Table 1. Selected bond lengths (\AA) for (I)

$\mathrm{Cu} 1-\mathrm{Pl}$	$2.1482(12)$	$\mathrm{Cu} 3-\mathrm{P} 3$	$2.1663(12)$
$\mathrm{Cu} 1-\mathrm{Cl} 4$	$2.3784(12)$	$\mathrm{Cu} 3-\mathrm{Cl} 3$	$2.3562(11)$
$\mathrm{Cu} 1-\mathrm{Cl1}$	$2.3916(11)$	$\mathrm{Cu} 3-\mathrm{Cl1}$	$2.4744(11)$
$\mathrm{Cu} 1-\mathrm{Cl} 2$	$2.4268(12)$	$\mathrm{Cu} 3-\mathrm{Cl4}$	$2.4769(11)$
$\mathrm{Cu}-\mathrm{P} 2$	$2.1541(12)$	$\mathrm{Cu} 4-\mathrm{P} 4$	$2.1558(13)$
$\mathrm{Cu} 2-\mathrm{Cl2}$	$2.3915(11)$	$\mathrm{Cu} 4-\mathrm{Cl} 3$	$2.3770(11)$
$\mathrm{Cu} 2-\mathrm{Cl1}$	$2.4453(11)$	$\mathrm{Cu} 4-\mathrm{Cl} 2$	$2.4079(12)$
$\mathrm{Cu}-\mathrm{Cl} 3$	$2.4532(12)$	$\mathrm{Cu} 4-\mathrm{Cl} 4$	$2.5306(12)$

Compound (II)

Crystal data
$\left[\mathrm{Cu}_{4} \mathrm{Br}_{4}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}\right)_{4}\right]$
$M_{r}=1814.96$
Trigonal
$R \overline{3}$
$a=21.1645$ (1) \AA
$c=28.9378$ (1) \AA
$V=11225.66(8) \AA^{3}$
$Z=6$
$D_{x}=1.611 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 8192 reflections
$\theta=1.70-24.89^{\circ}$
$\mu=3.400 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Irregular block $0.33 \times 0.33 \times 0.20 \mathrm{~mm}$ Colorless

Data collection

Siemens P4 CCD diffractometer
ω and φ scans
Absorption correction: empirical (SADABS; Blessing, 1995; Sheldrick, 1996)
$T_{\text {min }}=0.307, T_{\text {max }}=0.507$
18958 measured reflections
4304 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.147$
$S=1.131$
4304 reflections
289 parameters
H atoms riding
3021 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=24.89^{\circ}$
$h=-19 \rightarrow 24$
$k=-24 \rightarrow 23$
$l=-22 \rightarrow 34$
Intensity decay: -0.1%
$(\Delta / \sigma)_{\max }=0.058$
$\Delta \rho_{\text {max }}=1.314 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.415 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from
International Tables for
Crystallography (Vol. C)

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0808 P)^{2}\right. \\
&+3.6171 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

Table 2. Selected bond lengths (\AA) for (II)

$\mathrm{Br} 1-\mathrm{Cu} 2^{\text {i }}$	2.4904 (9)	$\mathrm{Cu} 1-\mathrm{Br} 2^{\text {i }}$	2.4911 (7)
$\mathrm{Brl}-\mathrm{Cu} 2$	2.4904 (9)	$\mathrm{Br} 2-\mathrm{Cu} 2^{\text {ii }}$	2.4465 (9)
$\mathrm{Br} 1-\mathrm{Cu} 2{ }^{\text {i1 }}$	2.4903 (9)	$\mathrm{Br} 2-\mathrm{Cu} 2$	2.749 (1)
Cul-P1	2.145 (2)	$\mathrm{Cu} 2-\mathrm{P} 2$	2.165 (2)
Cul-Br2 ${ }^{\text {i }}$	2.4910 (7)	$\mathrm{Cu} 2-\mathrm{Br} 2{ }^{\text {i }}$	2.4465 (9)
$\mathrm{Cul}-\mathrm{Br} 2$	2.4911 (7)		
Symmetry codes: (i) $1-x+y, 1-x, z ;$ (ii) $1-y, x-y, z$.			

All H atoms were introduced in ideal positions ($\mathrm{C}-\mathrm{H} 0.93 \AA$), riding on the C atom to which each is bonded; each was refined with an isotropic displacement factor 20% greater than that of the attached atom. All other atoms were refined with anisotropic displacement parameters. The final difference map for (II) showed a density peak of $1.31 \mathrm{e} \AA^{-3}$ at a distance of
$3.74 \AA$ from H18A. This distance was only slightly less than that from three other H atoms in other molecules; furthermore, it was only $0.80 \AA$ from an equivalent of itself.

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Blessing, 1995; Sheldrick, 1996); program(s) used to solve structures: SHELXTL/PC (Sheldrick, 1990); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXL97.

We are indebted to the GenCorp Foundation for partial support of this research. The X-ray equipment was purchased with assistance from an instrumental grant from the National Science Foundation (CHE8206423) and a grant from the National Institutes of Health (RR-06462).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1019). Services for accessing these data are described at the back of the journal.

References

Alyea, E. C., Ferguson, G., Malito, J. \& Ruhl, B. L. (1985). Inorg. Chem. 24, 3719-3720.
Barron, P. F., Dyason, J. C., Engelhardt, L. M., Healy, P. C. \& White, A. H. (1984). Inorg. Chem. 23, 3766-3769.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Churchill, M. R. \& DeBoer, B. G. (1975). Inorg. Chem. 14, 25022507.

Churchill, M. R., DeBoer, B. G. \& Donovan, D. J. (1975). Inorg. Chem. 14, 617-623.
Churchill, M. R., DeBoer, B. G. \& Mendak, S. J. (1975). Inorg. Chem. 14, 2041-2047.
Churchill, M. R., Donahue, J. \& Rotella, F. J. (1976). Inorg. Chem. 15, 2752-2758.
Churchill, M. R. \& Kalra, K. L. (1974a). Inorg. Chem. 13, 1065-1071.
Churchill, M. R. \& Kalra, K. L. (1974b). Inorg. Chem. 13, 1427-1434.
Churchill, M. R. \& Kalra, K. L. (1974c). Inorg. Chem. 13, 1899-1904.
Churchill, M. R. \& Rotella, F. J. (1977). Inorg. Chem. 16, 3267-3273.
Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A., Raston, C. L. \& White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 831-838.
Goel, R. G. \& Beauchamp, A. L. (1983). Inorg. Chem. 22, 395-400.
Nishizawa, Y. (1961). Bull. Chem. Soc. Jpn, 34, 1170-1178.
Pike, R. D., Starnes, W. H. Jr, Jeng, J. P., Bryant, W. S., Kourtesis, P., Adams, C. W., Bunge, S. D., Kang, Y. M., Kim, A. S., Kim, J. H., Macko, J. A. \& O'Brien, C. P. (1997). Macromolecules, 30, 6957-6965.
Sheldrick, G. M. (1990). SHELXTLPC. An Integrated System for Data Collection. Processing, Structure Solution and Refinement. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Teo, B.-K. \& Calabrese, J. C. (1976a). J. Chem. Soc. Chem. Commun. pp. 185-186.
Teo, B.-K. \& Calabrese, J. C. (1976b). Inorg. Chem. 15, 2467-2474.
Teo, B.-K. \& Calabrese, J. C. (1976c). Inorg. Chem. 15, 2474-2486.

Acta Cryst. (1999). C55, 165-167

μ-[1,1'-(1,2-Ethanediyl)bis(1H-1,2,4-triazole)]- $N^{4}: N^{4}$-bis $\{$ bis[1,1,1-trifluoro-3-(2-thenoyl)acetonato-O, $\left.O^{\prime}\right]$ copper(II) \}

Baolong Li, ${ }^{a}$ Jianzhong Zou, ${ }^{b}$ Chunying Duan, ${ }^{c}$ Yongiang Liu, ${ }^{c}$ Xianwen Wei ${ }^{c}$ and Zheng Xu ${ }^{c}$
${ }^{a}$ Department of Chemistry, Suzhou University, Suzhou 215000, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210008, People's Republic of China, and ${ }^{\text {c }}$ Coordination Chemistry Institute and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China. E-mail: ccinu@netra.nju.edu.cn

(Received 6 April 1998; accepted 15 September 1998)

Abstract

The crystal structure determination of the title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}\right)_{4}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{6}\right)\right]$ or $\left[\mathrm{Cu}(\mathrm{TTA})_{2}\right]_{2}$ btrz, where TTA is 1,1,1-trifluoro-3-(2-thenoyl)acetone and btrz is μ-[1, 1^{\prime}-(1,2-ethanediyl)bis(1 H -1,2,4-triazole) $]$, shows that the btrz ligand links two $\mathrm{Cu}^{\mathrm{II}}$ ions, forming a binuclear complex. Each Cu atom is in a distorted squarepyramidal coordination environment.

Comment

In the search for molecular-based materials with functions of catalysis, magnetism and clathration, polynuclear coordination complexes have recently been widely studied (Makoto et al., 1994). Although many rigid bridging ligands, such as $4,4^{\prime}$-bipyridine (Fujita et al., 1994), trans-1,2-bis(2-pyridyl)ethylene (Kitagawa et al., 1991) and metalloporphyrins (Abrahams et al., 1991), have been employed to build up these materials, relatively few flexible ligands have been exploited for this purpose. We report here the preparation and crystal structure of the binuclear copper(II) complex $\left[\mathrm{Cu}(\mathrm{TTA})_{2}\right]_{2}$ btrz, (I), where TTA is $1,1,1$-trifluoro-3-(2-thenoyl)acetone and btrz is μ-[1,1'-(1,2-ethanediyl)bis($1 \mathrm{H}-1,2,4$-triazole)]. In (I), the flexible btrz ligand (Torres et al., 1988) links two $\mathrm{Cu}^{\text {II }}$ ions.

(I)

